Bertin Pharma also markets pre-analytical products, EIA kits, antibodies, CYP450s & biochemicals for:

- Cardiology / Hypertension
- Diabetes / Obesity
- Endocrinology / Metabolism
- Inflammation
- Pharmacology
- Psychopharmacology
- Nitric Oxide
- Oncology / Apoptosis
- Oxidative injury
- Cell signaling
- Drug metabolism

Do not hesitate to contact our after-sales services for further information at bioreagent@bertinpharma.com
Acylated Ghrelin (human)
Express Enzyme Immunoassay kit
#A05106.96 wells

For research laboratory use only
Not for human diagnostic use

This assay has been developed & validated by Bertin Pharma
Table of contents

- Precaution for use .. 6
- Background ... 7
- Principle of the assay ... 10
- Materials and equipment required 12
- Sample collection and preparation 14
- Reagent preparation ... 17
- Assay procedure .. 20
- Data analysis ... 25
- Acceptable range .. 27
- Typical results .. 28
- Assay validation and characteristics 30
- Trouble shooting .. 36
- Bibliography ... 38
This kit contains:

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Colour of cap</th>
<th>Item #</th>
<th>Quantity per kit</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip 96 well Microtiter plate, pre-coated with anti-Ghrelin mouse monoclonal</td>
<td>Blister with zip</td>
<td>A08106.1 ea</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>antibody</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acylated Ghrelin (human, rat) Tracer Express</td>
<td>Green</td>
<td>A04106.100 dtn</td>
<td>1</td>
<td>Lyophilised</td>
</tr>
<tr>
<td>Acylated Ghrelin (human) Standard</td>
<td>Blue with red septum</td>
<td>A06106.1 ea</td>
<td>2</td>
<td>Lyophilised</td>
</tr>
<tr>
<td>Acylated Ghrelin (human) Quality Control</td>
<td>Green with red septum</td>
<td>A10106.1 ea</td>
<td>2</td>
<td>Lyophilised</td>
</tr>
<tr>
<td>Acylated Ghrelin EIA Buffer</td>
<td>Blue</td>
<td>A07106.1 ea</td>
<td>1</td>
<td>Lyophilised</td>
</tr>
<tr>
<td>Wash Buffer concentrated 400x</td>
<td>Silver</td>
<td>A17000.1 ea</td>
<td>1</td>
<td>Liquid</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Transparent</td>
<td>A12000.1 ea</td>
<td>1</td>
<td>Liquid</td>
</tr>
<tr>
<td>Ellman’s reagent 49+1</td>
<td>Black with red septum</td>
<td>A09000_49+1. 100 dtn</td>
<td>2</td>
<td>Lyophilised</td>
</tr>
<tr>
<td>Technical booklet</td>
<td>-</td>
<td>A11106</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Well cover sheet</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Each kit contains sufficient reagents for 96 wells. This allows for the construction of one standard curve in duplicate and the assay of 36 samples in duplicate.

If you want to use the kit in two times, we provide one additional vial of Standard, one of Quality Control and one of Ellman’s Reagent.
Precaution for use

Users are recommended to read all instructions for use before starting work.

Each time a new pipette tip is used, aspirate a sample or reagent and expel it back into the same vessel. Repeat this operation two or three times before distribution in order to equilibrate the pipette tip.

- For research laboratory use only
- Not for human diagnostic use
- Do not pipet liquids by mouth
- Do not use kit components beyond the expiration date
- Do not eat, drink or smoke in area in which kit reagents are handled
- Avoid splashing

The total amount of reagents contains less than 100 µg of sodium azide. Flush the drains thoroughly to prevent the production of explosive metal azides.

Wearing gloves, laboratory coat and glasses is recommended when assaying kit materials and samples.

Temperature

Unless otherwise specified, all the experiments are done at room temperature (RT), that is around +20°C. Working at +25°C or more affects the assay and decreases its efficiency.
Background

Acetylcholinesterase AChE® Technology

Acetylcholinesterase (AChE®), the enzymatic label for EIA, has the fastest turnover rate of any enzymatic label. This specific AChE is extracted from the electric organ of the electric eel, *Electrophorus electricus*, and is capable of massive catalytic turnover during the generation of the electrochemical discharges. The use of AChE as enzymatic label for EIA has been patented by the French academic research Institute CEA [1, 2, 3], and Bertin Pharma, formerly known as SPI-Bio, has expertise to develop and produce EIA kits using this technology.

AChE® assays are revealed with Ellman’s Reagent, which contains acetylthiocholine as a substrate. The final product of the enzymatic reaction (5-thio-2-nitrobenzoic acid) is bright yellow and can be read at 405-414 nm. AChE® offers several advantages compared to enzymes conventionally used in EIAs:

- **Kinetic superiority and high sensitivity**: AChE® shows true first-order kinetics with a turnover of 64,000 sec⁻¹. That is nearly 3 times faster than Horseradish Peroxidase (HRP) or alkaline phosphatase. AChE® allows a greater sensitivity than other labeling enzymes.

- **Low background**: non-enzymatic hydrolysis of acetylthiocholine in buffer is essentially absent. So, AChE® allows a very low background and an increased signal/noise ratio compared to other substrate of enzymes which is inherently unstable.
> **Wide dynamic range:** AChE® is a stable enzyme and its activity remains constant for many hours as, unlike other enzymes, its substrate is not suicidal. This permits simultaneous assays of high diluted and very concentrated samples.

> **Versatility:** AChE® is a completely stable enzyme, unlike peroxidase which is suicidal. Thus, if a plate is accidentally dropped after dispatch of the AChE® substrate (Ellman’s Reagent) or if it needs to be revealed again, one only needs to wash the plate, add fresh Ellman’s Reagent and proceed with a new development. Otherwise, the plate can be stored at +4°C with Wash Buffer in wells while waiting for technical advice from the Bioreagent Department.

Ghrelin

Ghrelin discovered in 1999, is fast becoming an endocrinology target of the millennium. Ghrelin, identified in rat stomach as an endogenous ligand for the GH secretagogue receptor, is mainly produced in stomach, but has been demonstrated in many other organs [4, 5].

In addition to GH-releasing properties and its orexant action, Ghrelin could act as an hormone having effects on gastric motility (similarity with the peptide hormone motilin), acidic secretion, cardiovascular action, antiproliferative effects, pancreatic and glucose metabolism function, sleep [6, 7, 8]...
Ghrelin gene raises to mRNA prepro-ghrelin of 117 amino acids. This precursor is processed into Ghrelin, 28 amino acids (human).

Before being secreted, this peptide is octanoylated at Ser 3 by GOAT (Ghrelin Octanoyl Acyl Transferase). This step is essential for biological activity making GOAT a perfect target for drugs in feeding behaviour. Interestingly, the potential therapeutic importance of this hormone is not restricted to regulation of food intake [9] but also in cachexia (related to cancer treatment, anorexia nervosa or ischemia) [10] gastric motility and may be involved in osteoporosis, somatopause, infertility and ovulation induction, neurological disorders (Alcoholism, Post Traumatic Stress disorders...) [11] and cardiovascular diseases.
Principle of the assay

This Enzyme Immunometric Assay (EIA) is based on a double-antibody sandwich technique. The wells of the plate supplied are coated with a monoclonal antibody specific to the C-terminal part of Ghrelin. This antibody will bind to any Ghrelin introduced into the wells (standard or sample). The acetylcholinesterase (AChE) - Fab’ conjugate (Tracer) which recognises the N-terminal part of Acylated Ghrelin is also added to the wells.

The two antibodies then form a sandwich by binding on different parts of the Acylated Ghrelin. The sandwich is immobilised on the plate so reagents in excess may be washed away.

The concentration of Acylated Ghrelin (human) is determined by measuring the enzymatic activity of immobilized Tracer using Ellman’s Reagent. AChE Tracer acts on Ellman’s Reagent to form a yellow compound that strongly absorbs at 414 nm.

The intensity of the colour, which is determined by spectrophotometry, is proportional to the amount of Acylated Ghrelin (human) present in the well during the immunological incubation.

This EIA so called Express EIA kit needs a short incubation time for immunological reaction (3 hours).
The principle of the assay is summarised below:
Materials and equipment required

In addition to standard laboratory equipment, the following material is required.

For the sample preparation

- EDTA tubes for blood collection
- 35 sampling tubes with PHMB #D31009
 or reagents for PHMB inhibitor solution:
 - Potassium Phosphate buffer 0.1 M pH 7.4
 - NaOH 10N
 - p-Hydroxymercuribenzoic acid (PHMB)
 - UltraPure water #A07001
 or Aprotinin (up to 0.6 TIU per mL blood)
 or PMSF
- HCl 1N (optional)

For the assay

- Precision micropipettes (20 to 1000 µL)
- Spectrophotometer plate reader (405 or 414 nm filter)
- Microplate washer (or washbottles)
- Orbital microplate shaker
- Multichannel pipette and disposable tips 30-300 µL
- UltraPure water (Ref. #A07001)
- Polypropylene tubes
Water used to prepare all EIA reagents and buffers must be UltraPure (deionized & free from organic contaminant traces). Otherwise, organic contamination can significantly affect the enzymatic activity of the tracer Acetylcholinesterase (AChE). Do not use distilled water, HPLC-grade water or sterile water. UltraPure water may be purchased from Bertin Pharma: item #A07001.1L
Sample collection and preparation

This assay has been validated to measure Acylated Ghrelin in buffer and in human plasma samples (see validation data at the end of this booklet).

General precautions

- All samples must be free of organic solvents prior to assay.
- Samples should be assayed immediately after collection or should be stored at -20°C.

Blood collection

- Blood samples are collected in tubes containing EDTA and a protease inhibitor to prevent the degradation of Acylated Ghrelin.

Choice of protease inhibitor

We suggest adding p-hydroxymercuribenzoic acid (PHMB) 1 mM in the final sample volume during the blood collection.

We suggest preparing a 100 times concentrated solution of protease inhibitor and then adding 10 μL of this solution per mL of blood. For example, for PHMB 100mM concentrated solution, prepare a potassium phosphate buffer 0.1 M pH 7.4 in which 1.2% NaOH 10N volume/volume is added. Then dissolve PHMB to get a 100 times concentrated solution (100 mM) in this buffer. Add 10 μL of this PHMB 100x solution per mL of blood. The PHMB 100x solution may be stored one month at -20°C.
We suggest using aliquots for PHMB 100x solution in order to avoid freezing/thawing cycles.

To avoid the preparation of PHMB protease inhibitor solution, Bertin Pharma provides sampling tubes for 1 mL of blood containing PHMB (item #D31009). Other protease inhibitors could be used with the assay like Aprotinin (up to 0.6 TIU/mL blood) or PMSF (around 0.1 mg/mL blood according to litterature) as indicated in the section “Protease inhibitor compatibility table” at the end of this booklet. For the use of these different products, please refer to the vendor’s instructions.

> Collection tubes are mixed by inversion 5 folds.

![Warning]

Samples should be kept on ice between collection and centrifugation (15 minutes max).

> Blood samples are centrifuged at 3,500 rpm for 10 minutes at +4°C and then, supernatants are transferred in separate tubes. Samples should be quickly assayed or stored at -20°C for later use.

> The best way is to assay the samples within 3 weeks after the collection date. Moreover, we suggest using aliquots for plasma samples (we suggest 250 µl per aliquot) in order to avoid freezing/thawing cycles.

> **Acidification of freshly prepared plasma** (to be done before storage) **with HCl** is often performed and doesn’t affect the performance of the assay.
When adding 100 µL of 1N HCl per mL of collected plasma and centrifuge them at 3,500 rpm for 5 min at +4°C, there is a slight increase in Acylated Ghrelin value, and no significant change on Unacylated Ghrelin value. Poor neutralization (by dilution or NaOH) of acidification may however lead to inconsistency in sample reproducibility.

Plasma samples prepared as above-mentioned can be assayed for Acylated Ghrelin with Acylated Ghrelin EIA kit or for Unacylated Ghrelin with Unacylated Ghrelin EIA kit.

➢ Sample preparation

Plasma samples may be assayed directly without any extraction procedure after being diluted at least to 1:5 in EIA Buffer in order to avoid matrix effect.
Reagent preparation

Each kit contains sufficient reagents for 96 wells. This allows for the construction of one standard curve in duplicate and the assay of 36 samples in duplicate.

If you want to use the kit in two times, we provide one additional vial of Standard, one of Quality Control and one of Ellman’s Reagent.

All reagents need to be brought to room temperature, around +20°C, prior to the assay.

EIA Buffer

Reconstitute the vial #A07106 with 50 mL of UltraPure water. Allow it to stand 5 minutes until completely dissolved and then mix thoroughly by gentle inversion. Stability at 4°C: 1 month

Acylated Ghrelin (human) Standard

Reconstitute the Standard vial #A06106 with 1 mL of UltraPure water. Allow it to stand 5 minutes until completely dissolved and then mix thoroughly by gentle inversion.

The concentration of the first standard S1 is 250 pg/mL.

Prepare seven propylene tubes for the other standards and add 500 µL of EIA Buffer into each tube. Then prepare the standards by serial dilutions as follows:
<table>
<thead>
<tr>
<th>Standard</th>
<th>Volume of Standard</th>
<th>Volume of EIA Buffer</th>
<th>Standard concentration pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td>S2</td>
<td>500 µL of S1</td>
<td>500 µL</td>
<td>125</td>
</tr>
<tr>
<td>S3</td>
<td>500 µL of S2</td>
<td>500 µL</td>
<td>62.5</td>
</tr>
<tr>
<td>S4</td>
<td>500 µL of S3</td>
<td>500 µL</td>
<td>31.3</td>
</tr>
<tr>
<td>S5</td>
<td>500 µL of S4</td>
<td>500 µL</td>
<td>15.6</td>
</tr>
<tr>
<td>S6</td>
<td>500 µL of S5</td>
<td>500 µL</td>
<td>7.8</td>
</tr>
<tr>
<td>S7</td>
<td>500 µL of S6</td>
<td>500 µL</td>
<td>3.9</td>
</tr>
<tr>
<td>S8</td>
<td>500 µL of S7</td>
<td>500 µL</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Stability at 4°C: 1 week

- **Acylated Ghrelin (human) Quality Control**

The Quality Control provided in this kit has been prepared by spiking Acylated Ghrelin (human) peptide in EIA Buffer.

Reconstitute the Quality Control vial #A10106 with 1 mL of UltraPure water. Allow it to stand 5 minutes until completely dissolved and then mix thoroughly by gentle inversion. **Stability at +4°C: 1 week**

- **Acylated Ghrelin Tracer**

Reconstitute the vial #A04106 with 10 mL of EIA Buffer. Allow it to stand 5 minutes until completely dissolved and then mix thoroughly by gentle inversion. **Stability at +4°C: 1 week**
Wash Buffer

Dilute 2 mL of concentrated Wash Buffer #A17000 with 800 mL of UltraPure water. Add 400 µL of Tween20 #A12000. Use a magnetic stirring bar to mix the content.

Stability at +4°C: 1 week

Ellman’s Reagent

5 minutes before use (development of the plate), reconstitute one vial of Ellman’s Reagent #A09000_49+1 with 49 mL of UltraPure water and 1 mL of concentrated Wash Buffer. The tube content should be thoroughly mixed.

Stability at 4°C and in the dark: 24 hours
Assay procedure

It is recommended to perform the assays in duplicate and to follow the instructions hereafter.

Plate preparation

Prepare the Wash Buffer as indicated in the reagent preparation section.
Open the plate packet and select the sufficient strips for your assay and place the unused strips back in the packet.

Stability at +4°C: 1 month.

Rinse each well 5 times with the Wash Buffer 300 μL/well.

Just before distributing reagents and samples, remove the buffer from the wells by inverting the plate and shaking out the last drops on a paper towel.

Plate set-up

A plate set-up is suggested hereafter.
The contents of each well may be recorded on the template sheet provided at the end of this technical booklet.
Pipetting the reagents

All samples and reagents must reach room temperature prior to performing the assay.

Use different tips to pipette the buffer, standard, sample, tracer, antiserum and other reagents.

Before pipetting, equilibrate the pipette tips in each reagent. Do not touch the liquid already in the well when expelling with the pipette tip.
> **EIA Buffer**
Dispense 100 µL to Non Specific Binding NSB wells.

> **Acylated Ghrelin (human) Standards**
Dispense 100 µL of each of the eight standards S1 to S8 in duplicate to appropriate wells.
Start with the lowest concentration standard S8 and equilibrate the tip in the next higher standard before pipetting.

> **Quality Control and samples**
Dispense 100 µL in duplicate to appropriate wells. Highly concentrated samples may be diluted in EIA Buffer.

> **Acylated Ghrelin Tracer**
Dispense 100 µL to each well, except Blank (Bk) wells.

▶ **Incubating the plate**
Cover the plate with the cover sheet and incubate for 3 hours at room temperature.
A longer immunological reaction (20 hours at +4°C) is also possible, increasing the sensitivity of the assay to 0.3 pg/mL.
Developing and reading the plate

> Reconstitute Ellman’s reagent as mentioned in the Reagent preparation section.

> Empty the plate by turning over. Rinse each well five times with 300 µL Wash Buffer. The 5th time, slightly shake the plate for 5 minutes on an orbital shaker. Then rewash five times with 300 µL Wash Buffer. At the end of the last washing step, empty the plate and blot the plate on a paper towel to discard any trace of liquid.

> Add 200µL of Ellman’s reagent to each 96 well. Cover the plate with aluminium sheet and incubate in the dark at room temperature. Optimal development is obtained using an orbital shaker.

> Wipe the bottom of the plate with a paper towel, and make sure that no liquid has splashed outside the wells.

> Read the plate at a wavelength between 405 and 414nm (yellow colour).

After addition of Ellman’s reagent, the absorbance has to be checked periodically (every 30 minutes) until the maximum absorbance has reached a minimum of 0.5 A.U. blank subtracted.
Express Enzyme Immunoassay Protocol (volumes are in µL)

<table>
<thead>
<tr>
<th>Volume</th>
<th>Wells</th>
<th>Blank</th>
<th>NSB</th>
<th>Standard</th>
<th>Sample or QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIA Buffer</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Standard</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sample or QC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Tracer</td>
<td>-</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Cover plate, incubate 3 hours at RT

Wash plate 5 times, shake 5 min, wash 5 times & discard liquid from the wells

<table>
<thead>
<tr>
<th>Ellman’s reagent</th>
<th>200</th>
</tr>
</thead>
</table>

Incubate with an orbital shaker in the dark at RT

Read the plate between 405 and 414 nm
Data analysis

Make sure that your plate reader has subtracted the absorbance readings of the blank well (absorbance of Ellman’s reagent alone) from the absorbance readings of the rest of the plate. If not, do it now.

> Calculate the average absorbance for each NSB, standard and sample.
> For each standard, plot the absorbance on y axis versus the concentration on x axis. Draw a best-fit line through the points.
> To determine the concentration of your samples, find the absorbance value of each sample on the y axis.
> Read the corresponding value on the x axis which is the concentration of your unknown sample. Do not forget to integrate the dilution factor of your own samples (due notably to the minimal dilution for the assay 1:5 and the addition of HCl 1N).
> Samples with a concentration greater than 250 pg/mL should be re-assayed after dilution in EIA Buffer.
> Most plate readers are supplied with curve-fitting software capable of graphing these data (logit/log or 4-parameter logistic fit 4PL). If you have this type of software, we recommend using it. Refer to it for further information.
Two vials of Quality Control are provided with this kit. Your standard curve is validated only if the calculated concentration of the Quality Control obtained with the assay is +/- 25% of the expected concentration (see the label of QC vial)
Acceptable range

- Non Specific Binding < 60 mA.U.
- Limit of detection in the sample before dilution < 5 pg/mL
- QC sample: ±25% of the expected concentration (see the label of QC vial)
Typical results

The following data are for demonstration purpose only. Your data may be different and still correct.

These data were obtained using all reagents as supplied in this kit under the following conditions: 60 minutes developing, reading at 414 nm. A 4-parameter logistic fitting was used to determine the concentrations.

<table>
<thead>
<tr>
<th>Acylated Ghrelin (human) pg/mL</th>
<th>Absorbance (mAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard S1</td>
<td>250</td>
</tr>
<tr>
<td>Standard S2</td>
<td>125</td>
</tr>
<tr>
<td>Standard S3</td>
<td>62.5</td>
</tr>
<tr>
<td>Standard S4</td>
<td>31.3</td>
</tr>
<tr>
<td>Standard S5</td>
<td>15.6</td>
</tr>
<tr>
<td>Standard S6</td>
<td>7.8</td>
</tr>
<tr>
<td>Standard S7</td>
<td>3.9</td>
</tr>
<tr>
<td>Standard S8</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Typical Acylated Ghrelin (human) standard curve
Assay validation and characteristics

The Enzyme Immunometric assay of Acylated Ghrelin (human) has been validated for its use in buffer and in plasma (without extraction but diluted at least 1:5). A sigmoidal 4-parameter logistic fitting was used to determine the concentrations.

For additional information regarding the validation of immunoassay for protein biomarkers in biological samples, please refer to bibliography [12, 13].

- **The limit of detection**, calculated as the concentration of Acylated Ghrelin corresponding to the NSB average ($n = 8$) plus three standard deviations is 0.8 pg/mL. Due to the minimal plasma dilution (1:5), the limit of detection in the samples is less than 5 pg/mL.

- **Intra-assay & inter-assay variations** and recovery:

<table>
<thead>
<tr>
<th>QC levels</th>
<th>Theoretical concentrations in diluted QC (pg/mL)</th>
<th>Mean of observed concentrations (pg/mL)</th>
<th>Intra-assay (CV%)</th>
<th>Inter-assay (CV%)</th>
<th>Recovery (%)</th>
<th>Confidence interval ($\alpha = 0.05$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC1</td>
<td>2</td>
<td>2.29</td>
<td>11.8</td>
<td>14.4</td>
<td>115</td>
<td>115 ± 9.5</td>
</tr>
<tr>
<td>QC2</td>
<td>25</td>
<td>27.0</td>
<td>6.2</td>
<td>6.7</td>
<td>108</td>
<td>108 ± 3.4</td>
</tr>
<tr>
<td>QC3</td>
<td>200</td>
<td>217</td>
<td>2.9</td>
<td>3.4</td>
<td>109</td>
<td>109 ± 2.1</td>
</tr>
</tbody>
</table>

Incubation 3 hours at room temperature

Incubation 20 hours at +4°C

QC1	2	1.83	10.3	10.9	91.4	91.4 ± 4.6
QC2	25	25.8	8.1	8.3	103	103 ± 3.5
QC3	200	219	5.5	5.9	110	110 ± 2.9
The intra-assay and inter-assay variations were studied on human plasma (free of Ghrelin). Each level of QC was prepared five time concentrated from this pool of human plasma and then diluted to 1:5 in EIA Buffer before assay. 60 aliquots were prepared for each of 3 level of QC. Replicate samples (n=6) at each of the three validation levels were analysed along with the calibration curve for a total of 5 independent runs.

Matrix variability

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Theoretical concentration (pg/mL)</th>
<th>Acylated Ghrelin measured (pg/mL)</th>
<th>Recovery (%)</th>
<th>Mean of recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>25.9</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>25.2</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26.7</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>27.2</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>27.1</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>

Five individual human plasma samples were tested. Validation samples (n=3) were prepared five times concentrated in each matrix (free from Ghrelin) and then diluted to 1:5 in order to obtain a final concentration of 25 pg/mL. QC were analysed against a calibration curve derived from a pool of human plasmas.
Dilution tests

<table>
<thead>
<tr>
<th>Samples</th>
<th>Dilution Factor</th>
<th>Acylated Ghrelin measured (pg/mL)</th>
<th>Corrected concentrations (pg/mL)</th>
<th>Recovery (%)</th>
<th>Mean of recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:5</td>
<td>27.4</td>
<td>137</td>
<td>-</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>13.4</td>
<td>134</td>
<td>97.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:20</td>
<td>6.5</td>
<td>129</td>
<td>94.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:25</td>
<td>4.3</td>
<td>108</td>
<td>78.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:50</td>
<td>2.0</td>
<td>100</td>
<td>73.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1:5</td>
<td>17.3</td>
<td>87</td>
<td>-</td>
<td>86.9</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>10.4</td>
<td>104</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:20</td>
<td>3.6</td>
<td>73</td>
<td>84.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:25</td>
<td>2.5</td>
<td>63</td>
<td>72.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:50</td>
<td>1.2</td>
<td>61</td>
<td>70.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1:5</td>
<td>24.2</td>
<td>121</td>
<td>-</td>
<td>94.6</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>12.6</td>
<td>126</td>
<td>104.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:20</td>
<td>5.6</td>
<td>111</td>
<td>91.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:25</td>
<td>4.3</td>
<td>107</td>
<td>88.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:50</td>
<td>2.3</td>
<td>114</td>
<td>94.2</td>
<td></td>
</tr>
</tbody>
</table>

Three human plasma samples were diluted to 1:5. Afterwards, four independent dilutions (n=3) were performed and analysed against a calibration curve.
> **Stability test (freezing/thawing)**

<table>
<thead>
<tr>
<th>Samples</th>
<th>Reference value (pg/mL)</th>
<th>1 cycle (pg/mL)</th>
<th>2 cycles (pg/mL)</th>
<th>3 cycles (pg/mL)</th>
<th>Mean of recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>186.0</td>
<td>127.0</td>
<td>162.0</td>
<td>163.0</td>
<td>81.0</td>
</tr>
<tr>
<td>2</td>
<td>66.2</td>
<td>71.3</td>
<td>67.0</td>
<td>73.0</td>
<td>106.0</td>
</tr>
<tr>
<td>3</td>
<td>70.8</td>
<td>53.8</td>
<td>59.0</td>
<td>67.0</td>
<td>84.7</td>
</tr>
<tr>
<td>4</td>
<td>120.0</td>
<td>82.7</td>
<td>113.0</td>
<td>95.0</td>
<td>80.8</td>
</tr>
<tr>
<td>5</td>
<td>176.0</td>
<td>141.0</td>
<td>158.0</td>
<td>149.0</td>
<td>84.8</td>
</tr>
</tbody>
</table>

Five human plasma samples (n=3) were analysed just after collection and dilution to 1:5 before the assay (reference value) and after 1, 2 and 3 freeze/thaw cycles.

> **Cross-reactivity**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylated Ghrelin (rat)</td>
<td>118 %</td>
</tr>
<tr>
<td>Unacylated Ghrelin (human)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Unacylated Ghrelin (rat)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Ghrelin (1-14) (human)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Ghrelin (1-11) (rat)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Ghrelin (17-28) (human, rat)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>GHRF (human)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Insulin (human)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Motilene</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Leptin (human)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Somatostatine</td>
<td><0.001 %</td>
</tr>
<tr>
<td>CRF (human, rat)</td>
<td><0.001 %</td>
</tr>
<tr>
<td>Glucagon (human, rat)</td>
<td><0.001 %</td>
</tr>
</tbody>
</table>
Plasma samples were collected on different protease inhibitors according to vendors instruction and measured with the appropriate kit. Recovery is different from one inhibitor to the other and it belongs to the end user to define according to its needs which inhibitor to be used. Acidification has also been tested with most inhibitors and may also change recovery, but will not affect the assay performances providing that dilution with EIA Buffer or neutralisation is performed.
Related products

<table>
<thead>
<tr>
<th>Item Reference</th>
<th>Designation</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>A05106.96 wells</td>
<td>Acylated Ghrelin (human) Express EIA kit</td>
<td>PHMB, PMSF, Aprotinin samples</td>
</tr>
<tr>
<td>A05106.384 wells</td>
<td>Acylated Ghrelin (human) 384w EIA kit</td>
<td>GOAT inhibitor screening</td>
</tr>
<tr>
<td>A05117.96 wells</td>
<td>Acylated Ghrelin (mouse, rat) Express EIA kit</td>
<td>PHMB, PMSF, Aprotinin samples</td>
</tr>
<tr>
<td>A05118.96 wells</td>
<td>UnAcylated Ghrelin (mouse, rat) Express EIA kit</td>
<td>PHMB, PMSF, Aprotinin samples</td>
</tr>
<tr>
<td>A05119.96 wells</td>
<td>UnAcylated Ghrelin (human) Express EIA kit</td>
<td>PHMB, PMSF, Aprotinin samples</td>
</tr>
<tr>
<td>A05306.96 wells</td>
<td>Acylated Ghrelin (human) Easy Sampling EIA kit</td>
<td>Any kind of sample</td>
</tr>
<tr>
<td>A05317.96 wells</td>
<td>Acylated Ghrelin (mouse, rat) Easy Sampling EIA kit</td>
<td></td>
</tr>
<tr>
<td>A05318.96 wells</td>
<td>UnAcylated Ghrelin (mouse, rat) Easy sampling EIA kit</td>
<td></td>
</tr>
<tr>
<td>A05319.96 wells</td>
<td>UnAcylated Ghrelin (human) Easy Sampling EIA kit</td>
<td></td>
</tr>
<tr>
<td>A05320.96 wells</td>
<td>UnAcylated Ghrelin (dog) Easy Sampling EIA kit</td>
<td></td>
</tr>
<tr>
<td>A05321.96 wells</td>
<td>Acylated Ghrelin (dog) Easy Sampling EIA Kit</td>
<td></td>
</tr>
<tr>
<td>A05401.96 wells</td>
<td>Acylated Ghrelin (pig) EIA kit</td>
<td>PHMB, PMSF, Aprotinin samples</td>
</tr>
<tr>
<td>A05402.96 wells</td>
<td>UnAcylated Ghrelin (pig) EIA kit</td>
<td>PHMB, PMSF, Aprotinin samples</td>
</tr>
<tr>
<td>D31009</td>
<td>Sampling Tubes with PHMB</td>
<td>Sample preparation</td>
</tr>
</tbody>
</table>
Trouble shooting

- **Absorbance values are too low:**
 - organic contamination of water,
 - one reagent has not been dispensed,
 - incorrect preparation/dilution,
 - assay performed before reagents reached room temperature,
 - reading time not long enough.

- **High signal and background in all wells:**
 - inefficient washing,
 - overdeveloping (incubation time should be reduced),
 - high ambient temperature.

- **High dispersion of duplicates:**
 - poor pipetting technique,
 - irregular plate washing.

- **If a plate is accidentally dropped after dispatch of the AChE® substrate (Ellman’s Reagent) or if it needs to be revealed again:**
 - one only needs to wash the plate, add fresh Ellman’s Reagent and proceed with a new development.
 - otherwise, the plate can be stored at +4°C with Wash Buffer in wells while waiting for technical advice from the Bioreagent Department.

These are a few examples of trouble shooting that may occur.
If you need further explanation, Bertin Pharma will be happy to assist you. Feel free to contact our technical support staff by phone (+33 (0)139 306 036), fax (+33 (0)139 306 299) or E-mail (bioreagent@bertinpharma.com), and be sure to indicate the batch number of the kit (see outside the box).

Bertin Pharma proposes EIA Training kit #B05005 and EIA workshop upon request. For further information, please contact our Marketing Department by phone (+33 (0)139 306 260) or E-mail (marketing@bertinpharma.com).
Bibliography

1. Grassi J., Pradelles P.
Compounds labelled by the acetylcholinesterase of *Electrophorus Electricus*. Its preparation process and its use as a tracer or marquer in enzymo-immunological determinations.
United States patent, N° 1,047,330. September 10, 1991

2. Grassi J., Pradelles P.
The use of Acetylcholinesterase as a Universal marker in Enzyme-Immunoassays
Proceedings of the Third International Meeting on Cholinesterases, American Chemical Society (1991)

3. Pradelles P., Grassi J. and Maclouf J.
Enzyme Immunoassays of Eicosanoids Using Acetylcholinesterase.
Methods in Enzymology (1990), vol. 187, 24-34

4. Kojima M., Kangawa K.
Ghrelin: structure and function
Physiol. Rev (2005), 85:495-522,

Ghrelin: A striking example of neuroendocrine peptide pleiotropy

6. de Faria Barros A. et al.
Is there association between acyl-ghrelin and inflammation in hemodialysis patients?
7. Grousselle D. et al.
Variations des peptides dérivés de la préproghréline au cours du repas dans l’anorexie mentale restrictive
Poster GIR-AFDAS-TCA2014

8. Delhanty P. et al.
Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis

9. Costantini V. et al.
GSK1614343, a Novel Ghrelin Receptor Antagonist, Produces an Unexpected Increase of Food Intake and Body Weight in Rodents and Dogs
Neuroendocrinology (2011);94:158–168

Acylated and unAcylated Ghrelin impair skeletal muscle atrophy in mice.
J. Clinical Invest (2013) 123(2): 611-622

Leptin and Ghrelin Levels in Patients With Schizophrenia During Different Antipsychotics Treatment: A Review
Schizophrenia Bulletin (2008) 34(6), 1189–1199

Validation of immunoassay for protein biomarkers: Bioanalytical study plan implementation to support pre-clinical and clinical studies.
13. European Medicines Agency
 Guideline on bioanalytical method validation, 21 July 2011

Additional readings
List of publications quoting the use of this kit.

 Hyperleptinemia independent of body adiposity in women with fibromyalgia
 Rheumatol Int (2014) DOI 10.1007/s00296-014-2988-0

15. Wasse L. *et al.*
 The influence of vigorous running and cycling exercise on hunger perceptions and plasma acylated ghrelin concentrations in lean young men

16. Gungor S. *et al.*
 Ghrelin, obestatin, nesfatin-1 and leptin levels in pregnant women with 2 and without hyperemesis gravidarum.
 Clin Biochem. (2013) DOI: 10.1016/j.clinbiochem.2013.01.015

17. Broom D. *et al.*
 Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males
doi:10.1152/ajpregu.90706.2008
Exercise-induced suppression of acylated ghrelin in humans

19. Lee Y. et al.
Lupin-enriched bread increases satiety and reduces energy intake acutely

20. Cederberg H. et al.
Unacylated ghrelin is associated with changes in body composition and body fat distribution during long-term exercise intervention
European Journal of Endocrinology (2011)DOI: 10.1530/EJE-11-0334
Bertin Pharma, over the last decades, has been developing and marketing over 100 biomarker assays, pre-analytical products, kits, antibodies and biochemicals thanks to its innovative work in research and development. Our core areas are orientated to inflammation, oxidative injury, endocrinology, diabetes, obesity, hypertension, neurodegenerative diseases, HIV, prion diseases, pharmacokinetics and metabolism.

Bertin Pharma is active worldwide either with direct sales or through our qualified and trained international distribution network from the United States to Japan.

We are able to provide you with local technical support to use at ease our products.

For further information, please send your request to bioreagent@bertinpharma.com